Tree rings in ITL sensors

HyeYun Park 03/28/2017 10:00AM

Tree rings

Dopant concentration

- ->variation in electric fields
- -> shape of sources distorted

Method

- Flat image reduction
 - Overscan subtraction & assemble

 M.Fisher-Levine, AssembleImage
 - Mean flux subtraction & high frequency pattern chosen
 -D.Kirkby, AstroCCD https://github.com/dkirkby/AstroCCD
- Finding center of rings
- Measure amplitudes of tree rings

Radius dependence

Wavelength dependence

Wavelength dependence

(Signal- mean)/mean [%]

• Orange(320nm),green(400nm),cyan(540nm),blue(770nm),magenta(850nm), red(970)

Wavelength dependence

• Orange(320nm),green(400nm),cyan(540nm),blue(770nm),magenta(850nm), red(970)

Compare sensors from same wafer ITL-3800C-017&022 / ITL-3800C-145&107

Analyzing ITL sensors received at BNL

Conclusion

- Amplitude gets larger from 0.1%~1.0% as it gets closer to outer part of the wafer.
- Since longer wavelengths penetrates deeper into the wafer, amplitude gets smaller for longer wavelengths.(mean amp 0.20%(850nm)~0.27%(320nm)
- Pair of sensors from same wafer has tree-ring patterns matched.
- 15 ITL sensors tested so far has mean value of 0.89% for maximum amplitude and 0.2% for mean over last 20~10 points.